Straight talk on 3-D imaging from an orthodontist

By Bradford Edglen, DDS, MS

Studies on learning have shown that visual images provide 80 to 90 percent of the information that the brain receives. So it makes sense that in the dental office, details received from our radiological workups are imperative for precise diagnosis and communication with patients.

Now, cone-beam technology has brought 3-D imaging right into the dental office, expanding the scope of treatment for my patients as well as other dental practitioners.

The greatest benefit of 3-D imaging is the amount of information obtained from each scan. The 360-degree scan of the entire head shows the maxillofacial complex in a format that can be rotated or sliced to achieve the best view of these structures.

For oral surgeons, periodontists or general dentists placing implants, the opportunity to view the dentition from all of these angles is of great benefit during diagnosis and planning.

My cone-beam system has even revealed supernumeraries, cysts and foreign objects hidden within standard radiographs.

When evaluating for implants, 3-D imaging allows the clinician to determine the height and width as well as the quality of the bone in the implant area.

Moreover, 3-D provides the ability to precisely evaluate the distance and angulation between roots of adjacent teeth to avoid damaging said tissues during implant placement.

Because implants are generally preferred for the missing single tooth, an orthodontist can scan a patient before deciding whether implants are possible and determining exactly how the teeth are aligned within the bone and make any necessary corrections.

It would be very disappointing for a patient to anticipate receiving an implant and crown only to realize later that the orthodontist didn’t create enough space for the implant.

Three-dimensional imaging provides for more precise measurements than 2-D panoramic radiographs, which can be unreliable because of distortion and superimposition.

Cone-beam imaging offers true 1:1 anatomical measurements, eliminating geometric errors of projection and supporting accurate linear measurements.

All of this improves surgical predictability for orthognathic surgery cases. With 3-D, I don’t have to calculate for magnification errors when determining the amount of surgical correction on these cases.

Before 3-D imaging, my orthodontic diagnostic records always included panoramic X-ray and lateral and frontal cephalograms. Now, with one scan I gain the panoramic, lateral and frontal images, as well as everything in between.

Skeletal asymmetries that may not be clearly visible on 2-D head films are more evident with a cone-beam scan. Three-dimensional imaging makes it easier to determine the buccal, lingual and vertical position of impacted teeth.

Cone-beam imaging also helps with informed consent. Three-dimensional scans reveal pathologies that may have become lost in 2-D images because of distortion, magnification and the superimposition of necessary equipment, your office becomes a leader in your community.

To learn more about offering sedation dentistry, go to DOCSeducation.org or call (866) 592-9617.

If you’ve ever considered offering sedation dentistry at your practice, now is the time to do it.

There are more than 1,540,000 good reasons to pursue the training—and patients waiting in the wings to receive your care.

By Heather Victorn

Have you ever Googled™ dental anxiety? If not, go ahead and try it. In less than a second, you’ll discover more than 1,540,000 unique hits on the term. Two simple words open the doors to the vast world of dental fear. It exists. It’s real. And it’s not going away.

You can be the most gentle dentist in the world. You can have a compassionate, caring, reassuring team. You can be decorated with every credential in the book. However, none of that matters in the mind of a person who has had a prior traumatic dental experience. Whether it was a negative encounter with a dentist as a child or a pain-riddled appointment as an adult, the associations patients have with them. It prevents them from seeking care later in life.

So how do you treat these patients? How do you get them to call your office, nonetheless make and keep an appointment?

The answer is more simple than you’d think. You offer them sedation dentistry. In other words, you provide them with a solution to their fears. It opens the doors to the vast world of dental treatment for my patients as well as other dental practitioners.

The greatest benefit of 3-D imaging is the amount of information obtained from each scan. The 360-degree scan of the entire head shows the maxillofacial complex in a format that can be rotated or sliced to achieve the best view of these structures.

For oral surgeons, periodontists or general dentists placing implants, the opportunity to view the dentition from all of these angles is of great benefit during diagnosis and planning.

My cone-beam system has even revealed supernumeraries, cysts and foreign objects hidden within standard radiographs.

When evaluating for implants, 3-D imaging allows the clinician to determine the height and width as well as the quality of the bone in the implant area.

Moreover, 3-D provides the ability to precisely evaluate the distance and angulation between roots of adjacent teeth to avoid damaging said tissues during implant placement.

Because implants are generally preferred for the missing single tooth, an orthodontist can scan a patient before deciding whether implants are possible and determining exactly how the teeth are aligned within the bone and make any necessary corrections.

It would be very disappointing for a patient to anticipate receiving an implant and crown only to realize later that the orthodontist didn’t create enough space for the implant.

Three-dimensional imaging provides for more precise measurements than 2-D panoramic radiographs, which can be unreliable because of distortion and superimposition.

Cone-beam imaging offers true 1:1 anatomical measurements, eliminating geometric errors of projection and supporting accurate linear measurements.

All of this improves surgical predictability for orthognathic surgery cases. With 3-D, I don’t have to calculate for magnification errors when determining the amount of surgical correction on these cases.

Before 3-D imaging, my orthodontic diagnostic records always included panoramic X-ray and lateral and frontal cephalograms. Now, with one scan I gain the panoramic, lateral and frontal images, as well as everything in between.

Skeletal asymmetries that may not be clearly visible on 2-D head films are more evident with a cone-beam scan. Three-dimensional imaging makes it easier to determine the buccal, lingual and vertical position of impacted teeth.

Cone-beam imaging also helps with informed consent. Three-dimensional scans reveal pathologies that may have become lost in 2-D images because of distortion, magnification and the superimposition of adjacent teeth to avoid damaging said tissues during implant placement.

Because implants are generally preferred for the missing single tooth, an orthodontist can scan a patient before deciding whether implants are possible and determining exactly how the teeth are aligned within the bone and make any necessary corrections.

It would be very disappointing for a patient to anticipate receiving an implant and crown only to realize later that the orthodontist didn’t create enough space for the implant.

Three-dimensional imaging provides for more precise measurements than 2-D panoramic radiographs, which can be unreliable because of distortion and superimposition.

Cone-beam imaging offers true 1:1 anatomical measurements, eliminating geometric errors of projection and supporting accurate linear measurements.

All of this improves surgical predictability for orthognathic surgery cases. With 3-D, I don’t have to calculate for magnification errors when determining the amount of surgical correction on these cases.

Before 3-D imaging, my orthodontic diagnostic records always included panoramic X-ray and lateral and frontal cephalograms. Now, with one scan I gain the panoramic, lateral and frontal images, as well as everything in between.

Skeletal asymmetries that may not be clearly visible on 2-D head films are more evident with a cone-beam scan. Three-dimensional imaging makes it easier to determine the buccal, lingual and vertical position of impacted teeth.

Cone-beam imaging also helps with informed consent. Three-dimensional scans reveal pathologies that may have become lost in 2-D images because of distortion, magnification and the superimposition of adjacent teeth to avoid damaging said tissues during implant placement.

Because implants are generally preferred for the missing single tooth, an orthodontist can scan a patient before deciding whether implants are possible and determining exactly how the teeth are aligned within the bone and make any necessary corrections.

It would be very disappointing for a patient to anticipate receiving an implant and crown only to realize later that the orthodontist didn’t create enough space for the implant.

Three-dimensional imaging provides for more precise measurements than 2-D panoramic radiographs, which can be unreliable because of distortion and superimposition.

Cone-beam imaging offers true 1:1 anatomical measurements, eliminating geometric errors of projection and supporting accurate linear measurements.

All of this improves surgical predictability for orthognathic surgery cases. With 3-D, I don’t have to calculate for magnification errors when determining the amount of surgical correction on these cases.

Before 3-D imaging, my orthodontic diagnostic records always included panoramic X-ray and lateral and frontal cephalograms. Now, with one scan I gain the panoramic, lateral and frontal images, as well as everything in between.

Skeletal asymmetries that may not be clearly visible on 2-D head films are more evident with a cone-beam scan. Three-dimensional imaging makes it easier to determine the buccal, lingual and vertical position of impacted teeth.

Cone-beam imaging also helps with informed consent. Three-dimensional scans reveal pathologies that may have become lost in 2-D images because of distortion, magnification and the superimposition of adjacent teeth to avoid damaging said tissues during implant placement.

Because implants are generally preferred for the missing single tooth, an orthodontist can scan a patient before deciding whether implants are possible and determining exactly how the teeth are aligned within the bone and make any necessary corrections.

It would be very disappointing for a patient to anticipate receiving an implant and crown only to realize later that the orthodontist didn’t create enough space for the implant.

Three-dimensional imaging provides for more precise measurements than 2-D panoramic radiographs, which can be unreliable because of distortion and superimposition.

Cone-beam imaging offers true 1:1 anatomical measurements, eliminating geometric errors of projection and supporting accurate linear measurements.

All of this improves surgical predictability for orthognathic surgery cases. With 3-D, I don’t have to calculate for magnification errors when determining the amount of surgical correction on these cases.

Before 3-D imaging, my orthodontic diagnostic records always included panoramic X-ray and lateral and frontal cephalograms. Now, with one scan I gain the panoramic, lateral and frontal images, as well as everything in between.

Skeletal asymmetries that may not be clearly visible on 2-D head films are more evident with a cone-beam scan. Three-dimensional imaging makes it easier to determine the buccal, lingual and vertical position of impacted teeth.

Cone-beam imaging also helps with informed consent. Three-dimensional scans reveal pathologies that may have become lost in 2-D images because of distortion, magnification and the superimposition of adjacent teeth to avoid damaging said tissues during implant placement.

Because implants are generally preferred for the missing single tooth, an orthodontist can scan a patient before deciding whether implants are possible and determining exactly how the teeth are aligned within the bone and make any necessary corrections.

It would be very disappointing for a patient to anticipate receiving an implant and crown only to realize later that the orthodontist didn’t create enough space for the implant.

Three-dimensional imaging provides for more precise measurements than 2-D panoramic radiographs, which can be unreliable because of distortion and superimposition.

Cone-beam imaging offers true 1:1 anatomical measurements, eliminating geometric errors of projection and supporting accurate linear measurements.

All of this improves surgical predictability for orthognathic surgery cases. With 3-D, I don’t have to calculate for magnification errors when determining the amount of surgical correction on these cases.
I discovered a horizontal root fracture on a patient and subsequently referred him to an endodontist for evaluation. This patient needed to be aware of the likelihood that the tooth could be lost because of previous trauma. Without this insight, foreshortening of the root or even tooth loss may have been blamed on the orthodontic treatment.

For TMJ disorders, with one scan that takes just a couple of minutes, I get panoramic, frontal and lateral views as well as corrected tomographs that would have taken me an hour or more with 2-D methods. After implementing cone-beam, I discovered some interesting cases that will be discussed in my webinar at 11:35 a.m. EST on October 17. In one case, we were waiting patiently for the second permanent molars to erupt before initiating phase II treatment.

After the other three second molars had already erupted, as part of progress records, the i-CAT® scan showed that an impacted third molar was impeding the eruption of the maxillary right second molar (Fig. 1).

On previous “standard” pans, the fourth third molar was perfectly superimposed with the second molar and was not evident. This second molar may never have erupted, or worse yet, would have been presumed to be ankyllosed.

In another example, a patient was referred from an oral surgeon for an i-CAT scan. The referring oral surgeon wanted to clarify diagnoses made at another office based upon previous digital pans, including a supernumerary, odontoma, failure to erupt and/or ankyllosed deciduous second molar.

On the scan (Fig. 2), it was evident that it was just an ankyllosed deciduous second molar, eliminating the need for a previously planned exploratory surgery. This patient also owes her future nice occlusion to 3-D imaging and diagnosis.

Our cone-beam also gave us a great view of another patient’s horizontally impacted maxillary central incisor (Fig. 3). When treatment started, the i-CAT machine aided the oral surgeon in exposing and placing a gold chain on the central for guided eruption. Her impacted canine, detected on the previous scan, has also since been brought into place.

Regarding patient education, an oral surgeon referred a patient for an i-CAT scan to verify the position of the mandibular canal in relationship to the impacted third and dentigerous cyst before extraction (Fig. 4).

This helped the patient visualize the extent of the third molar impaction and appreciate the size of the cyst. The patient was so impressed
with the i-CAT scan that he consequently set his daughter up for orthodontic treatment.

One of my most unusual cases involved a young patient who came in for braces, but after the i-CAT scan left with some clues that led to an ENT solving the mystery of her hearing loss (Fig. 5).

I’ll be discussing these cases and others in detail at my Webinar. While some of these cases show hidden pathologies, it is no secret that 3-D imaging sheds light on our more difficult cases, and no matter what our specialty is, adds a new dimension to our practices.

Dr. Bradford Edgren earned a doctorate of Dental Surgery from University of Iowa, College of Dentistry and a master’s in orthodontics.

He is certified by the American Board of Orthodontics (ABO), is a diplomate of the American Board of Orthodontics and a member of the College of Diplomates of the American Board of Orthodontics.

He is also a member of the American Association of Orthodontists, Rocky Mountain Society of Orthodontists, Colorado Orthodontic Association, The Edward H. Angle Society of Orthodontists—Southwest Component, American Dental Association, Colorado Dental Association and Weld County Dental Association.

Attend Edgren’s Webinar
11:35 a.m. EST
Oct. 1

Register (it’s free!) for Dr. Edgren’s live online broadcast and earn C.E. credits.

Register at: www.OTstudyClub.com
(did we mention its free?)

About the author

Dr. Bradford Edgren earned a doctorate of Dental Surgery from University of Iowa, College of Dentistry and a master’s in orthodontics.

He is certified by the American Board of Orthodontics (ABO), is a diplomate of the American Board of Orthodontics and a member of the College of Diplomates of the American Board of Orthodontics.

He is also a member of the American Association of Orthodontists, Rocky Mountain Society of Orthodontists, Colorado Orthodontic Association, The Edward H. Angle Society of Orthodontists—Southwest Component, American Dental Association, Colorado Dental Association and Weld County Dental Association.